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Abstract. We comment on some open questions and theoretical peculiarities in Tsallis nonextensive sta-
tistical mechanics. It is shown that the theoretical basis of the successful Tsallis’ generalized exponential
distribution shows some worrying properties with the conventional normalization and the escort proba-
bility. These theoretical difficulties may be avoided by introducing an so called incomplete normalization
allowing to deduce Tsallis’ generalized distribution in a more convincing and consistent way.
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1 Introduction

It is well known that Boltzmann-Gibbs statistics (BGS)
is inadequate for treating some complex systems. These
are systems with complex or long term interactions and
correlations, systems showing often distribution laws dif-
ferent from the usual ones (Gauss, Poisson), systems in
chaotic or fractal states and often related to nonextensive
phenomena in energy, entropy, heat, and other quantities.
Some examples of the failures of BGS are given in refer-
ence [1]. We see that we need a new statistical mechanics
fundamentally different from BGS. We can even conjec-
ture that a new kind of statistical theory may be neces-
sary for complex random phenomena because the validity
of the actual statistical method is subject to some ideal
conditions [2]. A brief discussion on this topic will be given
in the present paper.

In 1988, in a historical paper [3,4], Tsallis founded a
nonextensive statistical mechanics which, in its most re-
cent version, gives following canonical distribution func-
tions:

pi =

[
1− (1− q) βP

w
i p

q
i
(ei − U)

] 1
1−q

†
Z

(1)

with

Z =
w∑
i

[
1− (1− q) β∑w

i p
q
i

(ei − U)
] 1

1−q

†
(2)

where [y]† = y if y ≥ 0 and [y]† = 0 otherwise (Tsallis
cut-off). i is a state point in phase space, w the num-
ber of all accessible phase space points for the considered
system, ei the energy of the system at the state i, β the
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Lagrange multiplier of the constraint on the internal en-
ergy U given by

U =
∑w
i p

q
i ei∑w

i p
q
i

=
∑w
i p

q
i ei

Z1−q (3)

which is used by Tsallis to overcome some theoretical dif-
ficulties [4,5]. Equations (1, 2) mean

w∑
i

pi = 1, (4)

which is logical if we consider the fact that w represents
all possible states of the system. It should be noticed that,
in the limit q = 1, equation (1) becomes BGS, i.e. pi =
1
Z exp(−βei).

We refer to the generalized exponential distribution
equation (1) as Tsallis distribution function (TDF) which
is proved to be indeed very useful and efficacious in de-
scribing some systems with complex or long term inter-
actions. Many successful and convincing applications was
published over the last 10 years concerning different sys-
tems showing peculiar distribution laws (the reader is re-
ferred to references [1,6,7] for updated comments on this
subject).

In spite of the successes of TDF, researchers continue
to work on its theoretical foundation, because there are
still various open questions. One notes peculiar theoreti-
cal properties which sometimes are not very easy to un-
derstand and deserve to be investigated. In this paper, we
would like to discuss some fundamental aspects of the last
version of Tsallis theory and present some observations.
We also show a possible solution to the problems with
a modifications in the theoretical basis of nonextensive
statistics.
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2 Brief history of TDF

Let us begin by a brief review of the historical path of
TDF.

In 1988, Tsallis proposed the following generalized sta-
tistical entropy:

S = −k 1−
∑w
i=1 p

q
i

1− q , (q ∈ R) (5)

which he maximized according to Jaynes principle with
two constraints: equation (4) and the mathematically suit-
able expectation value of energy U :

U =
w∑
i

piei. (6)

This definition is completely legitimate if pi is considered
as probability. This approach led to the first version of
TDF, i.e.

pi =
[1− (q − 1)βei]

1
q−1
†

Z
(7)

with

Z =
w∑
i

[1− (q − 1)βei]
1
q−1
† . (8)

Later, it was found that Tsallis-1 had some shortcom-
ings such as the thermodynamic instability of entropy
and the incapacity to deduce some power-law distribu-
tions [4,8–11]. But quite before the first published criti-
cisms [9,11] on this theory, another version of TDF was
proposed by Curado and Tsallis [12]. This second version,
say, Curado-Tsallis, replaced equation (6) by:

U =
w∑
i

pqi ei. (9)

Curado-Tsallis formalism allows to get a mathematical
elegance with the conventional Legendre transformation
of thermodynamics:

∂S

∂U
=

1
T

= kβ (10)

where T is the absolute temperature. This elegance is lost
by Tsallis-1 version which gives:

∂S

∂U
=

1
T

= Z1−qkβ (11)

where U is no longer a simple function dependent only on
Z just like in the BGS case1.

1 In Tsallis-1 version, we have U = − 1
qZ

∂
∂β

P
i[1 − (q −

1)βei]
q
q−1
† , which nevertheless tends to BGS relation U =

− ∂
∂β

lnZ when q → 1.

The Curado-Tsallis formalism once again gives equa-
tion (7) with a change (q−1)→ (1−q), and is successfully
applied to systems showing non Gaussian distribution laws
as soon as its proposal. Nevertheless, the anomalous rela-
tion between the normalization equation (4) and the av-
erages equation (9) remains an open question. Rigorously
speaking, supposing equation (4), we logically write equa-
tion (6) for an observable average. In other words, equa-
tion (9) means that pqi is the observable probability but
is not normalized and that pi is an imaginary probability
which is normalized but never used in practice, i.e. pi is
not observable if equation (4) holds.

This second formalism, according to some au-
thors [4,5,11], shows some fundamental difficulties. For
example: 1) the average of a constant is not constant;
2) the total energy of two systems without any interac-
tion is not the sum of the energies of each system; 3) the
zeroth law does not hold; 4) the invariance of probability
with uniform energy translation is missing.

The third or last version of TDF is that mentioned at
the beginning of this paper. It replaces the unnormalized
average by a normalized one equation (3) and so resolved
the above mentioned problems.

When writing this manuscript, we saw another pro-
posal by Martinez et al. [13] concerning the energy con-
straint for entropy maximization. They propose using

w∑
i

pqi (ei − U), (12)

as the constraint but with U given by equation (3). This
approach overcomes a mathematical difficulty of the third
version of TDF, that is, the auxiliary function A(p) for
entropy maximization:

A = −1−
∑w
i=1 p

q
i

1− q − α
(

w∑
i

pi − 1

)

− β
(∑w

i p
q
i ei∑w

i p
q
i

− U
)

(13)

does not necessarily have a maximum. Because, first,
d2A

dpidpj
is not diagonal, i.e., d2A

dpidpj
6= 0 when i 6= j. Second,

even if we calculate only d2A
dp2
i

, we get:

d2A

dp2
i

= −qpi
[
Z1−q − qβp2q−1

i Z2q−2(ei − U)
]
. (14)

To ensure d2A
dp2
i
< 0 for a maximum entropy, we have to put

[Z1−q − qβp2q−1
i Z2q−2(ei−U)] > 0, which, evidently, can

not be always valid. Martinez et al. overcame this difficulty
with equation (12) leading to d2A

dpidpj
= 0 for i 6= j and

d2A
dp2
i

= −qpiZ1−q < 0. The entropy maximum is ensured.
This maximization still leads to equation (1) as prob-

ability distribution. In fact, this proposal is a composition
of the Curado-Tsallis maximization with

∑w
i p

q
i ei and an-

other constraint
∑w
i p

q
iU . The latter can be called invari-

ance constraint since its only role is to ensure the invari-
ance of the resulted distribution with respect to uniform
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translation of the energy levels ei. Due to the same dis-
tribution functions, this scenario has the same essential
characteristics as the last version of TDF, about which
we will discuss some open questions in the following sec-
tion.

3 Some questions about TDF

1. Let us begin by presenting an observation about the
maximum entropy principle of Jaynes. This principle
asserts that, in order to obtain the correct probabil-
ity distribution, it suffices to introduce into the en-
tropy maximization physical conditions or constraints
related to observable quantities, that is, the normal-
ization of the probability, the expectation, variance
or higher moments. Supposed equation (4) as nor-
malization, the only observable expectation value or
higher moments must be defined with equation (6).
The introduction of equation (9) or equation (3) does
not conform with this principle, because we do not
know whether these averages really represent observ-
able quantities or not. One may say that the success-
ful applications of these formalisms confirm the ob-
servability of these averages. But in this case, pi be-
comes non observable in turn. So the normalization
equation (4) should disappear in the entropy maxi-
mization. This observability question deserves to be
carefully studied. Indeed, if necessary, we could reject
any old principle and introduce new ones under the
condition that the resulted theory be useful and self-
consistent.

2. The second question was discussed by Raggio [14]. If
the expectation equation (3) satisfies the constraint
associated with the linearity in the observables, i.e.

x+ y = x+ y (15)

for two independent observables x̂ and ŷ, it does not
satisfy the linearity in the state (or distribution), i.e.

x[λp(1) + (1− λ)p(2)] = λx[p(1)] + (1− λ)x[p(2)]
(16)

where p(1) and p(2) are two normalized probability dis-
tributions, nor does equation (9) which violates even
equation (15). The origin of these violations is logi-
cally the discrepancy between the average equation (3)
(or (9)) and the normalization equation (4) according
to which the joint probability is p(x + y) = p(x)p(y)
and the probability summation is p(1+2) = p(1)+p(2).
If the average is calculated with pq instead of p, the
problem is evident since pq is not normalized and
pq(1 + 2) 6= pq(1) + pq(2). Indeed,

x[λp(1) + (1− λ)p(2)] =∑
i[λpi(1) + (1− λ)pi(2)]qxi∑
i[λpi(1) + (1− λ)pi(2)]q

6= λ

∑
i p
q
i (1)xi∑

i p
q
i (1)

+ (1− λ)
∑
i p
q
i (2)xi∑

i p
q
i (2)

· (17)

Equations (15, 16) are to be satisfied for that x̂, ŷ, p(1)
and p(2) be observable and have physical signification.
This problem naturally leads us to the following ques-
tion: does the observability of the normalization equa-
tion (4) is incompatible with that of the expectation
value given by equation (3) or (9)?

3. The third question we would like to discuss is about the
absence of analytic energy correlation. We know that
the correlations in entropy can be calculated a priori
with mathematical rigor. But the correlation in any
other observable quantities can not be calculated with
the average equation (3).
Let us suppose an isolated system C composed of two
subsystems A and B of which the distributions satisfy

pij(C) = pi(A)pj(B). (18)

In nonextensive statistics, this hypothesis of multipli-
cation law means that A and B are correlated and
gives the correlation term associated with energy. From
equations (1, 2) and (3), we straightforwardly obtain:

eij(A+B)− U(A+B) = [ei(A) − U(A)]
∑
i

pqi (B)

+ [ej(B)− U(B)]
∑
j

pqj(A)

+ (q − 1)β[ei(A)− U(A)][ej(B)− U(B)]. (19)

Without additional hypothesis, this equality does not
lead to any explicit relation between the Hamiltonians
H(A + B) and H(A) or H(B) neither for the micro-
state values ei nor for the average U . Tsallis and
coworkers [4,15] proposed neglecting the correlation
term of any observable between the subsystems. So
one can write:

eij(A+B) = ei(A) + ej(B) (20)

and

U(A+B) = U(A) + U(B). (21)

On the basis of this extensive energy approximation,
the zeroth law of thermodynamics is claimed to be
established for the foundation of nonextensive ther-
modynamics [15,16]. This problem will be discussed
below.

Our question about equations (20, 21) is: if in gen-
eral the correlation (nonextensive) terms of whatever
observable or interactions can be neglected, what is
the origin of the nonextensivity of entropy? We know
that entropy should be a continuous function of the
distributions which in turn are continuous functions of
the observables.

In addition, allowing equations (20, 21), we lose the
equalities equation (19) and equation (18), which are
crucial for the nonextensive theory. If equation (18)
fails, we cannot in fact find even the entropy correla-
tion given by

S(A+B) = S(A) + S(B) +
1− q
k

S(A)S(B). (22)
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4. Zeroth law of thermodynamics can not be established
without neglecting the correlation energy. That is to
say that the Lagrange multiplier β is no longer a “me-
ter” measuring the thermodynamic equilibrium. We
will show why.

We take once again the above mentioned isolated
system C composed of two subsystems A and B in
equilibrium. From equation (22), we get, for a small
variation of the total entropy:

δS(A+B) =
[
1 +

1− q
k

S(B)
]
δS(A)

+
[
1 +

1− q
k

S(A)
]
δS(B)

=
[
1 +

1− q
k

S(B)
]
∂S(A)
∂U(A)

δU(A)

+
[
1 +

1− q
k

S(A)
]
∂S(B)
∂U(B)

δU(B).

(23)

Because δS(A+B) = 0, we get[
1 +

1− q
k

S(B)
]
∂S(A)
∂U(A)

δU(A)

+
[
1 +

1− q
k

S(A)
]
∂S(B)
∂U(B)

δU(B) = 0. (24)

Now, in order to proceed, we need the relation be-
tween U(A + B) and U(A) or U(B) but it does not
exist. As mentioned above, U(A + B) can not be ex-
pressed in U(A) and U(B). So no relation can be
found between δU(A) and δU(B) and, as a conse-
quence, the derivative ∂S

∂U can not be calculated from
δS(A+B) = 0. So supposing U(A+B) = U(A)+U(B)
or δU(A) = −δU(B) proposed by Abe and Martinez
et al. [15,16], we obtain[

1 +
1− q
k

S(B)
]
∂S(A)
∂U(A)

=[
1 +

1− q
k

S(A)
]
∂S(B)
∂U(B)

(25)

or

Zq−1(A)β(A) = Zq−1(B)β(B) (26)

which is the generalized zeroth law with Zq−1β instead
of β = 1/kT as the measure of the equilibrium. Due to
this approximate zeroth law, the implicit distribution
function equation (1) becomes explicit for systems in
thermal equilibrium since it can be recast as

pi =
[1− (1− q)λ(ei − U)]

1
1−q
†

Z
(27)

where λ = βZq−1 is now an independent thermody-
namic variable. So the theory is reconciled with the

old notion of thermal equilibrium to the detriment of
the correlation between the components of the system.
In our opinion, two important things are lost in this
treatment: a) the generality of the nonextensive the-
ory which should be able to tackle correlated prob-
lems in taking into account the interactions; b) the
generality of the zeroth law which should hold within
a theory without any condition, or all thermodynamic
laws will become approximate. As a matter of fact, as
mentioned above and argued by Guerberoff et al. [11],
with additive energy or non interacting subsystems,
equation (18) and equation (22) do not hold so that
the zeroth law equation (26) can not be established.
Very recently, a new point of view about thermal equi-
librium and nonextensivity shows that equation (18)
or equation (22) is required by the existence of ther-
mal equilibrium with Tsallis entropy and should be
regarded as a basic assumption of the statistics for
equilibrium nonextensive systems. So that appropriate
energy nonextensivity satisfying equation (18) is abso-
lutely necessary for the validity of zeroth law within
Tsallis statistics [17,18]. We will come back to this is-
sue later in this paper.

5. Now we discuss a mathematical problem. From equa-
tion (1), we can write:

Z =
w∑
i

[1− (1− q)λ(ei − U)]
1

1−q
† (28)

=
w∑
i

[1− (1− q)λ(ei − U)]
q

1−q+1

†

= Zq
w∑
i

pqi [1− (1− q)λ(ei − U)]†

Considering the average defined in equations (3, 28)
can be recast as:

Z =
w∑
i

[1− (1− q)λ(ei − U)]
q

1−q
† (29)

or
w∑
i

[1− (1− q)λ(ei − U)]
1

1−q
† =

w∑
i

[1− (1− q)λ(ei − U)]
q

1−q
† . (30)

This equality is a basic relation of the theory and must
hold for arbitrary value of q, w, β and ei. Now let us
apply it to calculate the inverse temperature β.
From equation (29), we can write

w∑
i

pqi = Z1−q (31)

and

S = k
Z1−q(U)− 1

1− q , (32)
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Then we calculate the following derivative:

dS
dU

=
k

Zq
dZ
dU
· (33)

First we take the Z given by equation (2), we obtain:

dS
dU

= kλZ1−q = kβ. (34)

But if we take the Z of equation (29), we obtain

dS
dU

=
qkβ

Z

w∑
i

[1− (1− q)λ(ei − U)]
2q−1
1−q
† (35)

which means

Z = q
w∑
i

[1− (1− q)λ(ei − U)]
2q−1
1−q
† . (36)

If we put equation (36) into equation (33) and continue
in this way for n times, we will find

Z =
w∑
i

[1− (1− q)λ(ei − U)]
q

1−q
†

= q
w∑
i

[1− (1− q)λ(ei − U)]
2q−1
1−q
†

= q(2q − 1)
w∑
i

[1− (1− q)λ(ei − U)]
3q−2
1−q
†

= q(2q − 1)(3q − 2)
w∑
i

[1− (1− q)λ(ei − U)]
4q−3
1−q
†

= q(2q − 1)(3q − 2)...(nq − n+ 1)

×
w∑
i

[1− (1− q)λ(ei − U)]
(n+1)q−n

1−q
† (37)

with n = 0, 1, 2.... We create in this way a series of
equalities which seem not to hold. For example, if we
take the second equality of equation (37) and let q → 0,
the right-hand side will tend to zero and the left-hand
side to

∑w
i 1 = w. The result is w → 0. This same

result can also be obtained for q → 1
2 if we take the

third equality of equation (37) and for q → 2
3 with

the forth equality and so on. These singular points
in q value do not conform with the hypothesis that
equation (30) is a general relation of the theory. It
seems to us that these equalities are valid only when
q → 1 and Z becomes the BGS partition function.

We can also study the equality equation (30) in
another way. Let us suppose that x̂ is a continuous
variable within 0 < x < ∞. So Z sometimes can be
given by

Z =
∫ ∞

0

[1− (1− q)λ(x− U)]
q

1−q
† dx. (38)

or

Z =
∫ ∞

0

[1− (1− q)λ(x− U)]
1

1−q
† dx. (39)

In this case, we should put q > 1 for Z to be calculated
when x is large. The integration of equation (38) is al-
ways finite. But equation (39) needs q < 2 to be finite.
If q > 2, the Z of equation (38) can be calculated while
that of equation (39) diverges. This paradox naturally
disappears for q → 1.

6. Another problem concerning the relation between the
average U and the micro-state value ei or Z arises
due to equation (30). Usually, the U − Z relation
(U = − ∂

∂β lnZ in BGS) can be found by introducing
the distribution function equation (1) into the average
calculus equation (3):

U =
∑
i p
q
i ei

Z1−q

=
1
Z

∑
i

ei[1− (1− q)λ(ei − U)]
q

1−q
†

= − 1
Z

{
∂

∂λ

∑
i

[1− (1− q)λ(ei − U)]
1

1−q
†

−
∑
i

U [1− (1− q)λ(ei − U)]
q

1−q
†

}

= − 1
Z

{
∂Z

∂λ
− UZ

}
= − 1

Z

∂Z

∂λ
+ U (40)

which leads to, instead of the expected U −Z relation,

∂Z

∂λ
= 0. (41)

as well as

∂S

∂λ
=

∂

∂λ
k
Z1−q − 1

1− q = k
1
Zq

∂Z

∂λ
= 0. (42)

So the micro-macro relation is impossible to be found
if no mechanical quantity can be calculated from its
microstate values.

In addition, equation (41) gives rise to another
problem similar to that discussed in the precedent
part. Equation (41) can be easily verified if we take
the standard Z given by equation (2). But If we take
the Z in equation (29), we get the following relation

w∑
i

(ei − U)[1− (1− q)λ(ei − U)]
2q−1
1−q
† = 0 (43)

or

U =

∑w
i ei[1− (1− q)λ(ei − U)]

2q−1
1−q
†∑w

i [1− (1− q)λ(ei − U)]
2q−1
1−q
†

=
∑w
i eip

2q−1
i∑w

i p
2q−1
i

· (44)
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If we repeat the same reasoning with the Z of equa-
tion (36), we get

U =
∑w
i eip

3q−2
i∑w

i p
3q−2
i

· (45)

We can continue in this way with equation (40) and
obtain:

U =
∑w
i eip

q
i∑w

i p
q
i

=
∑w
i eip

2q−1
i∑w

i p
2q−1
i

=
∑w
i eip

3q−2
i∑w

i p
3q−2
i

=
∑w
i eip

4q−3
i∑w

i p
4q−3
i

... =
∑w
i eip

nq−n+1
i∑w

i p
nq−n+1
i

· (46)

Which means
∑w
i (ei − U) = 0 or U =

∑w
i ei/w if

q = n−1
n with n = 1, 2, 3.... i.e., we are led to the

microcanonical case. On the other hand, if we calculate
U from its definition equation (3) for q = 1/2, we will
be led to

U =
1
Z

(
w∑
i

ei −
λ

2

w∑
i

e2
i +

λ

2
U

w∑
i

ei

)
(47)

or

U =

(
w∑
i

ei −
λ

2

w∑
i

e2
i

)/(
Z − λ

∑w
i ei

2

)
, (48)

which does not seem to be a microcanonical case.
These mathematical problems discussed above

seem to be related directly to the fact that the TDF
equation (1) depends only on the difference ei−U . So
equation (1) can be regarded as the relative probability
distribution with respect to the average energy of the
system, but not the real probability with respect to a
suitable zero-energy we must choose due to the energy
translation variance of TDF. We will come back to this
problem at the end of the present paper. We also won-
der if the q-independent results for generalized ideal
gas [13] have something to do with this relative prob-
ability combined with extensive energy approximation
for “non interacting particles”.

We have discussed some questionable points in the last
version of TDF. Some other discussions concerning the
relation between TDF of the third version and the law
of large number are given in reference [19]. Of course,
these are questions that we have to study carefully. For

the moment, we do not see how to get out of these the-
oretical difficulties if we stay in the formalism with the
conventional normalization and the expectation value
equation (3). In what follows, we will show a possible way
out. The main idea is to introduce into Tsallis theory the
hypothesis of incompleteness of our knowledge (informa-
tion) about nonextensive systems.

4 Some considerations concerning statistics

Very recently, a possible alternative theoretical basis for
TDF was proposed [2,20]. The new formalism is based
on a reflection about the conditions of physical applica-
tion of the standard probability theory which is some-
times referred to as Kolmogorov probability theory [21].
This reflection leads to a mathematically simpler and co-
herent nonextensive framework being capable of avoiding
the problems discussed above.

This new theoretical framework is referred to as in-
complete statistics (IS). The basic idea of IS is that our
knowledge about the states (their position and total num-
ber in the phase space) of a system may be incomplete
and non exact. This is true at least for complex systems
with unknown space-time correlations which can not be
exactly described with analytic methods. So the equation
of motion must be incomplete in the sense that some in-
teractions are missing and its solution can not yield com-
plete knowledge about the systems. On the other hand,
Kolmogorov probability theory is founded on the hypoth-
esis that we know all the possible states of the studied
system or that the maximal information is complete and
can provide definite answers for all questions that can be
asked of the system. When we carry out a summation
or an integration of probability in phase-space, we sup-
pose that this is done over the possible states which can
be determined by the equation of motion. This assump-
tion is logical if and only if all interactions and space-time
correlations are well-known or their unknown parts are
negligible, as in the case of BGS or of other successful
probabilistic sciences.

5 Incomplete normalization

If the incompleteness of our knowledge is not negligible,
it is no longer sure that we sum over the possible states
of the system simply because we do not know all of them.
What we can do is to take the known states or events
suggested by the equation of motion or by our knowledge.
Their number, say v, may be greater or smaller than w,
the real number of all possible states. As a consequence,
the normalization condition is reduced to

v∑
i=1

pi = Q 6= 1 (49)

where pi is the true probability which can not sum to
one. The necessity to introduce this nonextensive or non-
additive probability is first noted by economists [1]. This
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probability in equation (49) was referred to by Rényi as
incomplete probability distribution [21] because the values
of the random variable of this distribution do not consti-
tute a complete (exhaustive) ensemble (i.e. v < w).

It should be noticed that Q is a constant depending on
the studied system. Now in order to apply conventional
probability theory, equation (49) has to be renormalized
to get a calculable “probability” related to pi as well as to
Q representing the nature of the system.

Our proposal [2] is to write

v∑
i=1

pi
Q

=
v∑
i=1

pqi . (50)

which means
v∑
i=1

pqi = 1, (q ∈ [0,∞]) (51)

and, for internal energy,

U =
v∑
i=1

pqi ei. (52)

Since pi is the true probability and satisfies 0 ≤ pi < 1, we
have to set 0 < q < ∞. q = 0 should be avoided because
it leads to pi = 0 for all states. We see from equation (50)
that Q = 1, Q < 1 and Q > 1 means q = 1, q < 1
and q > 1, respectively. q is directly related to Q (e.g.,
for microcanonical distribution, q = ln v

ln v−lnQ) and, in this
way, to the unknown correlations or information. This may
help to understand empirical q values for nonextensive
systems.

6 Nonextensive statistics

In this section, we present a method based on the incom-
plete normalization equation (51) in order to get TDF.

6.1 Nonextensive information and entropy

On the basis of the hypothesis of the nonextensivity (non-
additivity) of entropy or other quantities, we proposed
using a generalized logarithm function as a generalized
Hartley formula for the information measure I(N) re-
quired to specify one element in a system containing N
elements:

I(N) =
Ng − 1
g

(53)

where g is a real number. This means the following non-
additivity:

I(N1 ×N2) = I(N1) + I(N2) + gI(N1)× I(N2) (54)

where I(N1 × N2) is the information needed to specify
simultaneously 2 elements, each being in a subsystem 1

or 2. We see that the parameter g is a measure of nonex-
tensivity. If g → 0, I(N) → lnN and the information
becomes extensive (additive). Equations (52, 53) or (54),
plus the other axioms used by Shannon [2,22], lead to a
nonextensive entropy

S = −k
v∑
i=1

pqi
pgi − 1
g

= −k
∑v
i=1 p

q+g
i − 1
g

· (55)

We should ask that the above entropy recover the
Gibbs-Shannon one S = −k

∑w
i=1 pi ln pi for q = 1. This

constraint on nonextensive entropy is logical because q = 1
or Q = 1 implies a complete knowledge about the studied
system and short range interactions or correlations. In this
case, we do not have any reason for holding the nonexten-
sivity. So g = 0 when q = 1 and g should be monotonic
function of q, which ensures the monotonic q-dependence
of entropy.

6.2 Generalized distribution function

For maximum entropy, we write the following auxiliary
function:

A =
1−

∑v
i=1 p

q+g(q)
i

g(q)
+ αγ

v∑
i

pqi − αβ′
v∑
i

pqi ei. (56)

Let dA
dpi

= 0, we obtain

pi =

[
1− β′

γ ei
] 1
g(q)

†
Z

(57)

with

Zq =
v∑
i

[
1− β′

γ
ei

] q
g(q)

†
. (58)

Now it should be asked that the distribution equation (57)
become the BGS exponential distribution for q = 1 or
g(q) = 0, which means that equation (57) should be a
generalized exponential function, that is

Zgpgi (ei)− 1
g

= −β′ei. (59)

This straightforwardly leads to γ = 1/g(q) and

pi =
[1− g(q)β′ei]

1
g(q)

†
Z

(60)

From equation (60), it can be shown that

d2A

dp2
i

= −[g(q) + q]pg(q)+q−2
i . (61)

If we want that the distribution equation (57) be a max-
imum entropy (or minimum energy [23]) distribution, we
should put

g(q) + q > 0 (62)
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which ensures d2A
dp2
i
< 0 for a maximum entropy with equa-

tion (56). This means that the curve of g(q) is situated
above the straight line of g(q) = −q. If we impose the
monotonicity of S and g(q) with respect to q, we also
have

dg(q)
dq

< 0. (63)

Equation (60) is the generalized nonextensive distri-
bution function. Comparing it to equation (1), we see
that TDF corresponds to g(q) = 1 − q. This choice is
the simplest one that satisfies the two conditions equa-
tions (62, 63) and also yields the simplest nonextensive
entropy:

S = −k
v∑
i=1

pqi
p1−q
i − 1
1− q = −k

v∑
i=1

pi − pqi
1− q

= k
1−

∑v
i=1 pi

1− q · (64)

With the simplest generalized distribution function

pi =
[1− (1− q)β′ei]

1
1−q
†

Z
· (65)

Which is the TDF in IS version. It should be remembered
that a different forms of g(q) may lead to different distri-
butions.

Note that the distribution equation (65) is in the same
form as the TDF in Curado-Tsallis version but, due to the
incomplete normalization, has a different partition func-
tion given by

Zq =
v∑
i

[1− (1− q)β′ei]
q

1−q
† . (66)

The consequences of this change will be discussed in the
following sections.

We would like to mentioned here that Kaniadakis
[24,25] proposed a new generalization of BGS (κ-deformed
statistics) on the basis of nonlinear kinetics in low density
gas systems with normalized distribution function f . It is
argued that the q-variance of the q-exponential function of
TDF suggests to write f = pqi and so equations (51, 52).
This work gives equation (65) as single particle distri-
bution from the nonlinear kinetics theory. This result is
in accordance with the conclusion of reference [18] that
TDF is an exact distribution for both many-body sys-
tem (nonextensive) and correlated single body according
to equation (18) prescribed by thermodynamic equilib-
rium [17,18]. In this sense, the hypothesis of low density
gas is no longer necessary, and the κ-deformed statistics
can be regarded as a valid theory for any nonextensive gas
system in equilibrium having Tsallis entropy.

6.3 Generalized distribution and nonextensivity

We consider again the total system C composed of two
subsystems A et B in interaction. By pij(C) we denote

the probability that C is at the product state ij while A
is at the state i with a probability pi(A) and B at j with
a conditional probability pij(B | A). We can write

pij(C) = pi(A)pij(B | A), (67)

or

pqij(C) = pqi (A)pqij(B | A), (68)

which means

[1− g(q)β′eij(C)]
q
g(q)

†
Zq(C)

=

[1− g(q)β′ei(A)]
q
g(q)

†
Zq(A)

[1− g(q)β′eij(B)]
q
g(q)

†
Zq(B | A)

(69)

or

eij(C) = ei(A) + eij(B)− g(q)β′ei(A)eij(B) (70)

and, from equation (52),

U(C) = U(A) + U(B)− g(q)β′U(A)U(B). (71)

Since S is an observable as the others, equation (71) must
hold for S as well. Indeed, if we put the multiplication law
equation (67) into the entropy equation (55), we get

S(C) = −k
∑
ij p

q+g(q)
ij (C) − 1
g(q)

= −k
∑
ij p

q+g(q)
i (A)pq+g(q)ij (B | A)− 1

g(q)

= −k
∑
i p
q+g(q)
i (A)− 1
g(q)

− k
∑
j p

q+g(q)
ij (B | A)− 1

g(q)

− g(q)
k
k2

×
∑
i p
q+g(q)
i (A)− 1
g(q)

∑
j p

q+g(q)
ij (B | A)− 1

g(q)

= S(A) + Si(B | A)− g(q)
k
S(A)Si(B | A). (72)

with

Si(B | A) = −k
∑
j p

q+g(q)
ij (B | A)− 1

g
. (73)

Following the idea of Abe et al. [26], we can define a con-
ditional entropy of B as follows

S(B | A) =
∑
i

pqi (A)Si(B | A). (74)

From equation (72), we simply obtain

S(B | A) =
∑
i

pqi (A)
S(C) − S(A)

1− g(q)
k S(A)

(75)

=
S(C)− S(A)

1− g(q)
k S(A)



Q.A. Wang: Nonextensive statistics and incomplete information 365

or

S(C) = S(A) + S(B | A)− g(q)
k
S(A)S(B | A), (76)

which has exactly the same form as equation (71). It
should be noticed that this equation means that S(B |
A) = Si(B | A), i.e. the conditional entropy of B associ-
ated with a microstate i of A is in fact independent of i.
It is a little surprising to see this property with two cor-
related subsystems. But if we look back to the origin, we
find that this is simply the consequence of the postulate
equation (54) which supposes a nonextensive term in the
form of product of two sub-informations. This is natu-
rally a special choice of the nonextensivity described by
the generalized Hartley formula. If we choose a different
nonextensive information measure, the things will be dif-
ferent. Recently, the proposition of an entropy pseudoad-
ditivity [17] prescribed by thermal equilibrium shed light
on this problem. We understand that, supposed the gener-
alized Hartley formula (or Tsallis entropy), equation (54)
and so equation (22) are prescribed by the existence of
thermal equilibrium. In other words, without these rela-
tions, a composite system with correlated (not indepen-
dent!) subsystems can not have stable equilibrium state.
So any exact discussion about equilibrium systems must
conform with the factorization of compound probability
equation (18). As a consequence, the idea of additive en-
ergy with neglected correlations [15,16] or non interacting
systems [11], incompatible with the spirit of nonextensive
statistics, becomes unnecessary and should be rejected.
The definition of temperature has to be revisited on the
basis of nonextensive energy satisfying equation (18). It is
what we are doing in the following section.

7 Thermodynamic relations

To give statistical interpretation of thermodynamics, a
well defined temperature related to stable thermodynamic
equilibrium (maximum entropy or minimum energy) is
needed. In this section, we will present briefly some con-
sequences of IS. All the discussions are based on equa-
tion (18) and compatible entropy and energy pseudoaddi-
tivities.

7.1 Zeroth law and generalized temperature

First, what is β′ in the distribution equation (60)? In BGS,
β′ = β = 1

kT is the inverse temperature and the first law
of thermodynamics can be written as

dU = dQ+W (77)

or

dU = TdS + Y dX (78)

where W is the work done by Y , a generalized exterior
force (e.g. pressure −P ), X the correspondent displace-
ment (e.g. volume V ), and dS = dQ

T the thermodynamic

definition of entropy. When X remains constant, we have
dU = dQ and

dS
dU

=
1
T

= kβ. (79)

On the other hand, within IS, from equations (55, 60),
we obtain

S = −kZ
−g(q) − 1
g(q)

+ kβ′Z−g(q)U. (80)

or

S′ = −k 1− Z1−q

1− q + kβ′U (81)

with S′ = Zg(q)S = Z1−qS. This leads to

dS′

dU
= kβ′. (82)

Now we are showing that β′ still measures thermal
equilibrium at maximal entropy or minimal energy. Let
us take the nonextensivity relation equation (71) and cal-
culate a small variance of energy U(C):

δU(C) = [1− g(q)β′U(B)]δU(A)

+ [1− g(q)β′U(A)]δU(B). (83)

At equilibrium or energy minimum, δU(C) = 0, we obtain

[1− g(q)β′U(B)]δU(A) =

− [1− g(q)β′U(A)]δU(B). (84)

Putting this equation into the entropy maximum relation
equation (24) [in which (1 − q) should be replaced by
(q − 1) due to the IS version of entropy nonextensivity
equation (76)], we get

1− g(q)β′U(A)

1− g(q)
k S(A)

∂S(A)
∂U(A)

=
1− g(q)β′U(B)

1− g(q)
k S(B)

∂S(B)
∂U(B)

·(85)

With the help of equation (80), we can establish

Zg(q)(A)
∂S(A)
∂U(A)

= Zg(q)(B)
∂S(B)
∂U(B)

(86)

or

∂S′(A)
∂U(A)

=
∂S′(B)
∂U(B)

(87)

which means

β′(A) = β′(B). (88)

This result can also be obtained in another way. Multi-
plying equation (76) by Z1−q(C) and considering Z(C) =
Z(A)Z(B), we obtain

S′(C) = Z1−q(B)S′(A) + Z1−q(A)S′(B)

− g(q)
k
S′(A)S′(B). (89)
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On the other hand, from equation (80), it is straight-
forwardly to verify that, for maximum entropy at equi-
librium, δZ(C) = 0 and δS′(C) = 0. This leads equa-
tion (89) to[
Z1−q(B)− 1− q

k
S′(B)

]
δS′(A) =

−
[
Z1−q(A)− 1− q

k
S′(A)

]
δS′(B). (90)

Now with the help of equations (81, 84), we obtain equa-
tions (87, 88).

So β′ remains the meter of stable equilibrium state.
We can define a generalized temperature

T ′ =
1
kβ′

(91)

where T ′ = T if q = 1 or g(q) = 0.

7.2 Some other relations

Considering equation (82) and the energy conservation law
equation (77), we see that dS′ should be the measure of
heat transfer. We have to write

dQ =
dS′

kβ′
, (92)

or

dQ = T ′dS′. (93)

Now the first law of thermodynamics equation (78) should
be written as follows

dU = T ′dS′ + Y dX. (94)

The free-energy F have to be defined as

dF = −S′dT ′ + Y dX (95)

or

F = U − T ′S′, (96)

which leads to, with the help of equation (81):

F = −kT ′Z
1−q − 1
1− q · (97)

Considering Z(C) = Z(A)Z(B), we easily obtain:

F (C) = F (A) + F (B)− g(q)
kT ′

F (A)F (B). (98)

We also have, for the heat capacity

CX =
dQ
dT ′

= T ′
{
∂S′

∂T ′

}
X

= −T ′
{
∂2F

∂T ′2

}
X

(99)

and for the generalized force

Y =
{
∂F

∂X

}
T ′
· (100)

8 The fundamental problems revisited
within incomplete statistics

What about the problems discussed in Section 3 if we
consider IS? Let us examine them one by one.
1. The first problem of the incompatibility between

normalization and expectation value does not exist
any more because the incomplete normalization equa-
tion (51) is compatible with the expectation value
equation (52).

2. The second problem was that the expectation value
equation (3) was not linear in the distributions shown
by equation (16). This problem can be avoided within
IS thanks to equations (51, 52):

x[λp(1)+(1−λ)p(2)] =
∑
i[λp

q
i (1)+(1−λ)pqi (2)]xi∑

i[λp
q
i (1) + (1− λ)pqi (2)]

= λ
∑
i

pqi (1)xi

+ (1− λ)
∑
i

pqi (2)xi

= λx[p(1)] + (1− λ)x[p(2)].

(101)

3. The problem of the absence of analytic correlation in
energy and other observable quantities can be resolved
by equations (70, 71), which guarantee a nonextensive
statistical theory with mathematical rigor.

4. The problem of the zeroth law of thermodynamics was
resolved in the above section.

5. The fifth problem discussed in Section 3 is due to the
peculiar equality equation (30) which in turn is due to
the average defined in equation (3). In IS, this prob-
lem does not exist any more thanks to the incomplete
normalization and the concomitant expectation value
equations (51, 52).

6. In IS, the U − Z relation can be found from equa-
tions (52, 65):

U =
∑
i

pqi ei

=
1
Zq

∑
i

ei[1− (1− q)β′ei]
q

1−q
†

= − 1
Zq

∂

∂β′

∑
i

[1− (1− q)β′ei]
1

1−q
†

= − 1
Zq

∂Z

∂β′
(102)

where

Z =
∑
i

[1− (1− q)β′ei]
1

1−q
† . (103)

9 Energy invariance of the distribution

A crucial problem of the nonextensive distribution equa-
tion (65) is that it is not invariant with respect to uniform
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translation of energy spectra ei. If we replace ei by ei+C
where C is constant, equation (65) becomes:

pi =
[1− (1− q)β′(ei + C)]

1
1−q
†

Z
(104)

with

Zq =
v∑
i

[1− (1− q)β′(ei + C)]
q

1−q
† (105)

which is not same as equation (65), excepted that q = 1.
This problem worries enormously scientists [4]. It is known
that thermostatistics takes into account only energies rel-
ative to thermodynamic movements and that the choice of
energy-zero is never a problem in BGS because the theory
has exponential distribution and is invariant with uniform
energy translation. But with TDF, equation (104) implies
that the properties of a gas may depend on the transla-
tion speed or on the location of the container. Although
in practice we can always choose the usual energy-zero
as for BGS, this peculiar theoretical property of TDF is
somewhat unusual and disturbing. Avoiding this puzzling
variance of distribution has been one of the motivations
of the third version of Tsallis theory. Now the following
questions arise: Why do we have to fix only one choice of
zero-energy in TDF to avoid the container-dependence of
the statistics? Why does the nonextensivity lead to this
theoretical property? Is it really something to be avoided?

As is well known, BGS is an extensive theory which
holds only for systems with weak or short range inter-
actions. In addition, the invariance of BGS is based on
the classical mechanics which leaves the interaction poten-
tial completely arbitrary. But TDF is a theory for solving
problems with complex interaction or correlations we of-
ten ignore. So we are not obliged or it is not advisable
to identify the variance of TDF to that of BGS. The en-
ergy translation invariance is not an universal characteris-
tic of physical theories. As a matter of fact, this property
of arbitrary potential energy disappears even in classical
mechanics and BGS if we consider the relativistic effect.
We can not add constant into the energy E of a system
because E is related to its total mass M by

E = Mc2 (106)

where c is the light speed. E is not arbitrary because M
can not be changed arbitrarily.

If we accept the the variance of TDF, we have to choose
a definite zero potential energy. Let us suppose a non neg-
ligible interaction or correlation between all the elements
of mass mi and energy ei (i = 1, 2, 3, ...) of a system. Let
V be the total interaction energy. M can be given by:

M =
∑
i

mi + V/c2 (107)

or

Mc2 =
∑
i

mic
2 + V =

∑
i

ei + V (108)

with ei = mic
2 for ith element. It is obvious that neither

M , nor ei and V can be changed. If not, the variance of the
theory would be perturbed [29]. According to this discus-
sion, a possible choice of zero potential energy corresponds
to the following case

M =
∑
i

mi (109)

or V = 0. This condition may correspond in some cases to
infinite distance between the elements of the system (e.g.
an atom when we consider the internal energy between
the electrons and the nucleus), and in other cases, to spe-
cial positions of this elements (e.g. equilibrium position of
the atoms in crystal lattice if we are interested in their vi-
bration). This is in fact just what we usually choose with
BGS.

It is worth emphasizing that some of the problems dis-
cussed in Section 3 seem to be related to the distribution
functions invariant through energy translation. Because, if
we apply the maximization method of Martinez et al. [13],
i.e. to introduce

∑w
i p

q
iU as the invariance constraint into

the auxiliary function equation (56), we obtain:

pi =
[1− (1− q)β′(ei − U)]

1
1−q
†

Z
(110)

with

Zq =
v∑
i

[1− (1− q)β′(ei − U)]
q

1−q
† , (111)

which is invariant through energy translation and different
from equation (1) only by the partition function. We easily
find that the problems 3 to 6 take place again with ques-
tionable equalities similar to equations (19, 24) and (30)
which make it difficult to establish the zeroth law without
any approximation and lead to other puzzling equalities
like equations (37, 40) and (46). Does the distribution in-
variance inevitably lead to the theoretical peculiarities?
This seems an interesting topic which is beyond the range
of the present work.

10 Conclusion

We have shown some observations about the actual nonex-
tensive statistical theory. The problems discussed reveal
that, with the conventional normalization equation (4)
and the expectation value equation (3), the generalized
exponential distribution, though very successful in many
applications, cannot be obtained with convincing theo-
retical approach and so the nonextensive statistics shows
peculiar properties which seem difficult to be avoided. We
have shown that it was possible to overcome these diffi-
culties if we introduced the concept of incomplete infor-
mation with suitable normalization and expectation. This
approach allows to establish TDF in a consistent way with
only a different partition function. New nonextensive ther-
modynamic relations were deduced on the basis of gener-
alized definitions of heat and temperature. It is argued
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that the energy invariance should not be considered as a
necessary property of TDF. The connection between the
nonextensivity and the energy shift dependence of TDF
remains to be understood.

I acknowledge with great pleasure the very useful discussions
with Professors J.P. Badiali, Shige Peng, Alain Le Méhauté
and S. Abe. Thanks are also due to Dr. M. Pezeril, Dr. Laurent
Nivanen, Dr. François Tsobnang, Professor Zengjing Chen and
Dr. Yufeng Shi for valuable discussions.

References

1. C. Tsallis, Chaos, Solitons, Fractals 6, 539 (1995).
2. Q.A. Wang, Chaos, Solitons, Fractals 12, 1431 (2001);

e-print: cond-mat/0009343.
3. C. Tsallis, J. Statis. Phys. 52, 479 (1988).
4. C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261,

534 (1998).
5. F. Pennini, A.R. Plastino, A. Plastino, Physica A 258, 446

(1998).
6. Silvio R.A. Salinas, C. Tsallis, Brazilian J. Phys. 29,

(1999).
7. C. Tsallis, Chaos, Solitons, Fractals 13, 371 (2002), e-print:

cond-mat/0010150.
8. C. Tsallis, Phys. Lett. A 206, 389 (1995).
9. J.D. Ramshaw, Phys. Lett. A 198, 119 (1995).

10. B. Lesche, J. Stat. Phys. 27, 419 (1982).
11. G.R. Guerberoff, G.A. Raggio, J. Math. Phys. 37, 1776

(1996); G.R. Guerberoff, P.A. Pury, G.A. Raggio, J. Math.
Phys. 37, 1790 (1996).

12. E.M.F. Curado, C. Tsallis, J. Phys. A 24, L69 (1991).
13. S. Martinez, F. Nicolas, F. Pennini, A. Plastino, Phys. A

286, 489 (2000), e-print: physics/0003098; S. Martinez,
F. Pennini, A. Plastino, Phys. Lett. A 278, 47 (2000); S.
Abe, Phys. Lett. A 278, 249 (2001).

14. G.A. Raggio, Equivalence of two thermostatistical for-
malisms based on the Havrda-Charvat-Daróczy-Tsallis
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